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Continuous Estimation of Reliability in Intricate 

Engineering Systems 
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Abstract — The reliability of some sensitive engineering systems often derives from non-linear interactions at the sub system level. In 
practice, safety devices are usually implemented in such systems at the microscopic and macroscopic levels. This ensures robust 
availability and reliability. In addition, real time maintenance schemes are also deployed in high risk systems. Such policies are informed by 
real time instrumentation. On the whole, systems’ configuration and quality of maintenance decision determine reliability and availability.  
As a rule, such schemes are adaptive in nature. They acquire and process vital in service systems statistics for decision-making. In this 
regard, non-linear pattern classifiers and discriminant functions are emerging alternatives to conventional tools; especially when ability to 
acquire and use experience is at an advantage. Thus, using probability safety assessment approach; this work develops a feature 
extracting artificial neural network processor for continuous statistical monitoring and diagnosis of engineering systems. The aim is to 
support decision-making associated with system reliability and enhanced availability of high risk systems. In addition to ability to give piece 
wise description of the health status of the system, our neural diagnostic scheme predicts impending system down time more accurately 
when compared with the performance of a statistical monitoring tool.  

Index Terms— hybrid scheme, neural computing, probability safety assessment, systems availability, systems reliability     

——————————      —————————— 

1 INTRODUCTION                                                                     
OR some engineering systems, the criteria for optimum 
performance, availability and reliability are specified over 
a very narrow bandwidth of systems parameters and op-

erating conditions. Occasionally, some of these systems fail 
catastrophically in service at very high financial and human 
cost. Thus, such systems are classified as intricate or   high-risk 
systems. Structurally, they consist of complex multi-
component systems with high level of connectivity. Such net-
works are often series and parallel coordination of compo-
nents and subsystems. Thus, the efficiency and reliability of 
such systems derive from non-linear intra and inter subsystem 
interactions of components, its architecture, and the prevailing 
maintainability scheme. Fortunately, for most of these sys-
tems, efficiency and state of health can be inferred from some 
measurable in-service statistics. 

 
Therefore, for this class of engineering systems, automated 

instrumentation facilitates maintenance decision via online 
sensors and data processors. To date, many tools are available 
for this class of decision making. However, in approach; life 
testing techniques and probability safety assessment are two 
classical statistical methods for optimizing maintenance strat-
egies.  In a comparative analysis, [1] outlined the strengths 
and drawbacks of the some statistical processors. Though the 
review seems to have an appeal for probability safety assess-
ment; the approach is still vulnerable to non-optimum inspec-
tion frequency along with deficiencies in ability to characterize 
system non-linearity. In addition, apart from these shortcom-
ings, it is evident that statistical inferencing machines do not 
incorporate real life experience. To address this problem [2], 
[3] and [4] proposed some intelligent tools for the assessment 
of systems reliability. These tools combine statistical infor-
mation and experience to formulate real time maintenance 
policies for enhanced systems availability and reliability.  

 
Intelligent tools for fault detection and systems reliability 

can be grouped as expert systems, qualitative automated rea-
soning or model based diagnosis. Others are the neural net-
work and evolving distributed intelligence tools such as the 
web based or multi-agent framework. In contrast to traditional 
reliability assessment methods that are exclusively based on 
signal processing and pattern classification techniques. These 
intelligent tools are able to follow experience, utilize complete 
domain of developed experts’ knowledge in the field and also 
exhibit ability to learn.       

 
However, as obtained in traditional techniques, systems 

dynamics and non-linearity pose important challenge to intel-
ligent fault diagnostics tool. Although the neural network has 
a proven advantage in ability to handle systems non-linearity; 
it is well-known that systems complexity and large data size 
elongates its training time to delay fault detection. Specifically, 
[5] described the limitation of artificial neural network in this 
regard. Based on this observation, [6] reiterated the needs for 
further development of the neural network scheme. 

  
Consequently, this work presents the development of a hy-

brid neural network and probability safety assessment scheme 
for continuous estimation of reliability in high risk systems.  
For a numerical example, we consider the energy sector as test 
case. Thus, our hybrid neural network and probability safety 
assessment algorithm is herein deployed to estimate system 
availability and reliability of two power barges belonging to a 
thermal station located at Egbin in southwest Nigeria.  

2 MODEL DEVELOPMENT 
Considering an n-component system in series or parallel con-
nection with some wearing components at time instant (t). To 
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develop a probability boundary function for a neural network 
pattern classifier, we define the following probability vector of 
reliability measures at time t. 

 
𝑃𝑡(𝑡) = (𝑃1𝑡(𝑡)𝑃2𝑡(𝑡) …𝑃𝑛𝑡(𝑡)) 
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Here 𝑚𝑖
𝑡 is the observed value of parameter i, 𝑚𝑖

𝑃𝑃 is the speci-
fied lower limit of the bandwidth of 𝑚𝑖

𝑡  if the system is at 
peak operating condition. 𝑚𝑖

𝑃𝑃 is the specified upper limit. 𝑘𝑃 
is a factor describing the flexibility of the upper limit. Next, we 
define 𝑒 = (𝑒1 𝑒2… 𝑒𝑛) as the vector of available maintenance 
strategies designed to transform measurable parameters of the 
system to their peak operational values along a path that satis-
fies the performance index;  

                                  �𝑛�𝑃(𝑡)
𝑡 � = 〈𝑒(𝑡), 𝑐〉 

 
Furthermore given 𝑒(𝑡), the transformation of the system’s 
prevailing health status 𝐻(𝑡, 𝑒) is presumed to proceed via; 
        𝑒(𝑡)Φ(t)𝑃𝑡𝑡(𝑡)𝑇 =  𝐻(𝑡, 𝑒)              
 Φ(t) is the non linear state transition matrix.   
 
We also presume that in real systems, the dynamics of 𝑃𝑡(𝑡)  
is non-linear and stepwise in nature. Thus;  

                                                                                                                
𝑃�𝑡(𝑡) = 𝑓[𝑃𝑡(𝑡),Φ(t), 𝑒(𝑡), 𝑡]              (5)                                                                               

This implies that the system transition matrix Φ(t) consists of 
sequence of transition operations on the conditional state 
probability vector. Consequently; 

𝑃𝑖(𝑡,𝑦�)
𝑡∗ = 𝑃{𝑒|(𝑡, �̅�), �̅�} .𝑃𝑡∗{𝑒|𝑡∗}  

                                                              
Here, 𝑃𝑡∗{𝑒|𝑡∗} is the conditional probability that the next ob-
servation of 𝑃𝑖𝑡(𝑡) will be 𝑃𝑖𝑡

∗(𝑡∗) given the instantaneous 
health status of the system and the prevailing maintenance 
policy 𝑒(𝑡) in the interval   𝑡∗ = (𝑡 + Δ𝑡).  
Given that 𝕘𝑖(𝑡) is the optimized cost of sustaining measured 
parameter 𝑒 at a safe state 𝑚𝑖

𝑡,∀𝑡. Assuming all transitions fol-
low the shortest admissible trajectory. Then according to [7], 
equations (3), (4) and (6) satisfy the following form of Bell-
man’s equation; 
 
𝕘�𝑖(𝑡) = ∑ 𝑃{𝑡|𝑒} min𝑑 𝐸𝑖∗{𝑒(𝑡, 𝑡∗) + 𝕘𝑖∗|𝑒, 𝑡, �̅�}𝑡   
 
In this work,  𝑒(𝑡, 𝑡∗) is a function of defective components in 
the interval between 𝑡 and 𝑡∗. Clearly, 𝑒(𝑡)  is optimal if it min-

imizes equation (7) for all values of 𝑒, and 𝑡. Thus, this condi-
tion facilitates the characterization of the sequence of the tran-
sition matrices Φ(t) for various configurations of 𝑒(𝑡) 
and 𝑃𝑡(𝑡). Therefore, it is possible to approximate hierarchical 
values of 𝐻(𝑡, 𝑒) corresponding to various configurations 
of 𝑒(𝑡), Φ(t) and 𝑃𝑡(𝑡).    
 

2.2 Artificial Neural Network Training Algorithm 
Following the primary objective of this work, we propose a 
health index neural feature extraction scheme of the form;      
  
                                            

𝐻𝚤�(𝑡, �̅�) = 𝑊𝑒𝑡 + ∑ 𝑊𝑒𝑗𝕘�𝑒(𝑡)           𝑒 = 1,2, , , 𝑛𝑚
𝑗=1             (8) 

 
Equation (8) maps the health index at time 𝑡  into some state 
vector 

𝕘�𝑖(𝑡)  = (𝕘1(𝑡),𝕘2(𝑡), … ,𝕘𝑛(𝑡))     
                                                                                        

The elements of the weight matrix 𝑊 are computed in the 
manner of [8] to extract the feature of the one-step health tran-
sition function Φ(t). Applying gradient techniques, and the 
methods described in [9], it is easy to show that the feed for-
ward ANN process with backward propagation for the extrac-
tion 𝑒𝑖𝑗 at time step  𝑘 (i.e. 𝑒𝑖𝑗(𝑘)) using equations (6), (7) and  
(8) can be written as; 
 
𝐸�∆𝑒𝑖,𝑗(𝑘)� = 𝜂𝐸 �∑ 𝑒𝑖,𝑗(𝑘)𝕘𝑞(𝑘)𝕘𝑗(𝑘)𝑁

𝑞=1 � −

𝜂𝐸 �∑ 𝑒𝑖,𝑝(𝑘)𝕘𝑝(𝑘)𝕘𝑗(𝑘)∑ ∑ 𝑒𝑞 ,𝑃(𝑘)𝕘𝑡(𝑘)𝑒𝑞,𝑗(𝑘)𝑁
𝑡=1

𝑒
𝑞=1

𝑁
𝑝=1 �           

(10) 
      η > 0, is the learning rate. 
 
In compact matrix form, equation (10) can be written as   
            
𝐸�∆𝑤𝑖,𝑗(𝑘)�

𝜂
= 𝑊𝑖∗(𝑘)𝐶(𝑘) −∑ �𝑊𝑖∗(𝑘)𝐶(𝑘)𝑊𝑞

𝑇(𝑘)� −𝑁−1
𝑞=1

𝑊𝑖∗(𝑘)𝐶(𝑘)𝑊𝑖
𝑇(𝑘)𝑊𝑖∗(𝑘)                               

 
where      𝐶(𝑘) = (𝕘1(𝑘), 𝕘2(𝑘) … 𝕘𝑁−1(𝑘)) 
 
The neurons in Equations (10) and (11) are activated by the 
non linear strategic function 
 

𝕘𝑚(𝑘) =
1

1 + exp (−∑ 𝑊𝑚(𝑘)𝑘
𝑚=0 )

 

                                                                                                 
To investigate the consistence and accuracy of the developed 
feature extraction scheme, we follow the stability criterion 
derived in [10] from a Lyapunov stability analysis. With re-
spect to equations (11) and (12) the condition for global as-
ymptotic stability of the feature extraction process is given as 

 

(‖𝑊(𝑘)𝑇‖2 + ‖𝑊(𝑘)−𝑇‖2)2 ≤ 2𝜂−‖𝐶(𝑘)‖2
‖𝐶(𝑘)−1‖2

                                                                               
 

(1) 

(2) 

(3) 

(4) 

 
(6) 

(7) 

(9) 

 
 
(11) 

(12) 

(13) 
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Considering uniformly sampled data space, so that the data 
acquisition interval Δ𝑡 is constant. Also, given the symmetry of 
the hidden layers of our neural network architecture, it can be 
easily verified that the choice of a symmetric positive definite 
matrix 𝐶(𝑘) with 𝑀𝑀𝑀|𝐶(𝑒, 𝑗)| < 2𝜂 and the normalisation 
𝑒𝑖,𝑗(𝑘) = 𝑤𝑖,𝑗(𝑘)

𝑀𝑎𝑥�𝑤𝑖,𝑗(𝑘)�
 in equation (11) guarantees stability in the 

sense of equation (13).    
 

3 POWER BARGE INSTRUMENTATION PROCEDURE  
To test our algorithm, we consider the problem of monitoring 
the health of two power barge systems belonging to an inde-
pendent thermal plant operator in Nigeria. For this purpose, 
instrumentation parameters are sampled at a frequency of 
0.01Hz on the test barges. On each of them, processing is de-
centralized to the subsystems level. That is the subsystem with 
poorest condition determines systems’ overall health status. 
Some sensitive barge subsystems that are considered in this 
study include Turbine Support Legs TSLs, Main Transformer 
(MT), Lubrication System (LS), Water Cooling System (WCS), 
and Exhaust Gas System (EGS). At the time of this work, 
maintenance decisions on the facility are based on the Com-
puterized Maintenance Management Software (CMMS), this is 
assisted by the specification of the safe bandwidths of the cor-
responding acquired data. Specifically, these include tempera-
ture, air filter pressure, frequency and amplitude of vibration 
e.t.c.  
 
3.1 Model Application 
We adapt the neural computing network to extract the ele-
ments 𝑒𝑖,𝑗  of the transition matrix at discrete time state (𝑘). 
Using Equation (2), the measured EGTs are transformed into 
probability measures at the input nodes. To train the network, 
corresponding availability measure at the output node is ob-
tained from the normalized CMMS assessment. Learning is 
initiated with an order of magnitude analysis. On these test 
barges, the analysis converged on the EGTs as the instrumen-
tation data of interest.  
 
Probability measures corresponding to TTXD1, through 
TTXD4 were admitted as inputs into each of the input nodes. 
For all layers, learning starts with 𝑒𝑖,𝑗 = 𝑒𝑗,𝑖 = 0.025. These 
values are updated using equation (9) until �𝑒𝑖,𝑗(𝑛+ 1) −
𝑒𝑖,𝑗(𝑛)� < 𝑡𝑡𝑡 = 0.001 is satisfied. At the end of a training cy-
cle, the EGT measurement on any of the input nodes with  

 

𝑀𝑒𝑛
�∑ ∑ ∑ ��𝑤𝑖,𝑗

2 +𝑤𝑗,𝑖
2 �

𝑘

𝑛
𝑗=1

𝑚
𝑖=1

4
𝑘=1 � 

                       
 

is replaced with the next available measurement. Here m and 
n are the numbers of perceptrons in the 𝑘𝑡ℎ 𝑀𝑛𝑎 (𝑘 + 1)𝑡ℎ lay-
ers respectively. This dimension reduction cycle is repeated 
until all the EGTs and TSs have been considered in the for-
ward and backward directions. Conversely, to deduce the 
health status of the Barges from the EGT measurements; the 

corresponding probabilistic measures as expressed in equation 
(2) are used as inputs to the neural feature extraction algo-
rithm, and the normalised weights 𝑒𝑖,𝑗 𝑒𝑗,1⁄  are subsequently 
applied to compute 𝐻(𝑡, 𝑒).       
 

4 SUMMARY OF RESULTS  
The parameters short listed for analysis on Power Barge A by 
the dimension reduction process include; TTXD3, TTXD5, 
TTXD17 and TTXSPL. Correspondingly, on Power Barge B, we 
have TTXD2, TTXD8, TTXD14 and TTXD17. For each of the 
Barges, 2300 recorded data points were used for network 
training. The convergence condition is satisfied after an aver-
age of 5863 epochs. Training and validation were performed in 
Matlab R2008a environment on a 1.83GHz Intel iCore 3 pro-
cessor. The maximum duration for training and validation 
recorded is 117seconds. Tables 1a and 1b show the extracted 
weight vectors for connections linking the first/second (𝑘 = 2) 
and the second/third second (𝑘 = 3) layers.                                                                                        

Table 1a:  Weights Vectors between First and Second Hidden 
Layers on Power Barges A and B 

 
Barge A(wi,j )  Barge B(wi,j ) 
0.4791,1 0.7821,1 
2.3161,2 -1.0171,2 
-1.5091,3 -1.2191,3 
0.8251,4 2.0071,4 
1.7132,1 0.7222,1 
-0.9132,2 3.1172,2 
1 .2302,3 0.4162,3 
0.0812,4 -1.2122,4 

 
Table 1b: Weights Vectors between Second and Third Hidden 
Layers on Power Barges A and B 

Barge A(wi,j ) Barge B(wi,j ) 
1.7151,1 0.6431,1 
1.8391,2 2.0161,2 
0.9392,1 -1.1192,1 
1.3312,2 1.1082,2 
-0.0633,1 1.7133,1 
1.0273,2 1.3013,2 
0.9334,1  1.2304,1 
1.0874,2 -1.4714,2 

 
Individually, Tables 1a and 1b show the dependence of 
the 𝑒𝑖,𝑗’s on the current and past records of instrumentation 
parameters. Along with equation (10), these tables and their 
complements for (𝑘 = 1) and (𝑘 =  4) facilitate a categoriza-
tion of the effectiveness of the instrumentation process, their 
reach-ability on the state of the subsystem(s) and effect on the 
overall performance of the EGS.         
 
Figures 1 and 2 validate the performance of our hybrid neural 

(10) 
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computing scheme using the outcome of the CMMS as 
benchmark. This comparative analysis was carried out for 
eighteen hours of a day that Barge B was shut down for cor-
rective maintenance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summarily, three hierarchical levels of performance are speci-
fied for the outcomes of H (t, r) as classified in Table 2. 
 
GOOD PERFORMANCE 0.995 ≤ H(t, r) ≤1.0 
TOLERABLE PERFORMANCE 0.995 ≤ H(t, r) ≤0.990 
EMERGENCY CONDITION         H(t, r) < 0.990 
Table 2: Hierarchical Classification of the EGS Performance 

Levels 
 

According to the classification on Table 2, subsystems with 
good performance conditions are continuously monitored. The 
CMMS recommends sequence of adaptive maintenance poli-
cies for subsystems with tolerable performance index, whereas 
Barge with emergency state in any of its subsystems is shut 
down for corrective maintenance.    
 
 Compared with the CMMS output, the computational accura-
cy of the hybrid neural computing scheme is evaluated as 
99.72%. To obtain this efficiency, we have used the normalized 
CMMS performance index as training and validation data. 
Also, by using a neural network architecture that simulate 
system’s configuration at the component level, our hybrid 
neural diagnostics scheme has the advantage of enhanced 
trouble shooting when compared with the CMMS. To be pre-
cise, the break down in Barge B as shown in Figure 2 was 
traced to a worn outlet valve relating to TTXD14. This is as 
indexed in the H(t,r) obtained by our hybrid neural computing 
scheme.   
 
4.1 Conclusion 
This work developed a hybrid neural computing scheme to 
demonstrate that a combination of the traditional probability 
safety assessment technique with an intelligent tool (precisely 
the artificial neural network) can significantly improve on the 
precision and diagnostic ability of devices that are deployed 
for continuous monitoring of intricate engineering systems. 
The hybrid scheme has inherent abilities to characterize the 
interplay between subsystems and components, reduce in-
strumentation sample space and accelerate trouble shooting to 
enhance systems availability. This hybrid form has the ad-
vantage of improved convergence rate of the neural compu-
ting algorithm. However, for real time health monitoring of 
high risk engineering systems, the scheme should be devel-
oped further to minimize the lag time between data acquisi-
tion and health inference. 
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